2023年成考高起点每日一练《数学(理)》10月20日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、若则()
- A:
- B:
- C:
- D:
答 案:B
解 析:首先做出单位圆,然后根据问题的约束条件,利用三角函数线找出满足条件的a角取值范围
2、过点P(2,3)且在两轴上截距相等的直线方程为()
- A:
- B:
- C:x+y=5
- D:
答 案:B
解 析:选项A中,在x、y 轴上截距为 5.但答案不完整 所以选项B中有两个方程,在x轴上横截距与y轴上的纵截距都为0,也是相等的 选项C,虽然过点(2,3),实质上与选项A相同.选项 D,转化为:答案不完整
3、中心在坐标原点,对称轴为坐标轴,且一个顶点(3,0),虚轴长为8的双曲线方程是()
- A:
- B:
- C:
- D:
答 案:B
解 析:双曲线有一个顶点为(3,0),因此所求双曲线的实轴在x轴上,可排除A、C选项,又由于虚轴长为8,故b=4,即b2=16,故双曲线方程为
4、若甲:x>1,乙:则
- A:甲是乙的必要条件,但不是乙的充分条件
- B:甲是乙的充分必要条件
- C:甲不是乙的充分条件,也不是乙的必要条件
- D:甲是乙的充分条件,但不是乙的必要条件
答 案:D
解 析:而故甲是乙的充分条件,但不是必要条件
主观题
1、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量和关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此
3、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得解得
4、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.
答 案:由△ABC的面积为得所以AB =4.因此所以
填空题
1、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()
答 案:7
解 析:由题可知长方体的底面的对角线长为,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为
2、lg(tan43°tan45°tan47°)=()
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0
精彩评论