2023年成考高起点每日一练《数学(文史)》10月14日专为备考2023年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知向量i,j为互相垂直的单位向量,向量a=2i+mj,若|a|=2,则m=()
- A:-2
- B:-1
- C:0
- D:1
答 案:C
解 析:由题可知a=(2,m),因此,故m=0.
2、设集合S={(x,y)|xy>0},T={(x,y)|x>0,且y>0},则
- A:S∪T=S
- B:S∪T=T
- C:S∩T=S
- D:S∩T=∅
答 案:A
解 析:由已知条件可知集合S表示的是第第一,三象限的点集,集合T表示的是第一象限内点的集合,所以所以有S∪T=S,S∩T=T,所以选择A。
3、已知双曲线上一点到两焦点(-5,0),(5,0)距离之差的绝对值等于6,则双曲线方程为()
- A:
- B:
- C:
- D:
答 案:A
解 析:由已知条件知双曲线焦点在x轴上属于第一类标准式,又知c=5,2a=6, ∴a=3,∴所求双曲线的方程为
4、函数f(x)=当x∈[-2,+∞)时是增函数,当x∈(-∞,-2]时是减函数,则f(1)=()
- A:-3
- B:13
- C:7
- D:由m而定的常数
答 案:B
解 析:由题意知抛物线的对称轴为x=-2,
主观题
1、在△ABC中,已知三边 a、b、c 成等差数列,且最大角∠A是最小角的2倍, a: b :c.
答 案:
2、设函数f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的单调区间
答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得
6-6m-36=-36
故m=1.
(Ⅱ)由(Ⅰ)得f'(x)=
令f'(x)=0,解得
当x<-3时,f'(x)>0;
当-3
3、已知三角形的一个内角是,面积是周长是20,求各边的长.
答 案:设三角形三边分别为a,b,c,∠A=60°,
4、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值
答 案:(Ⅰ)当n=1时,由得 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:
填空题
1、函数y=的定义域是()
答 案:[1,+∞)
解 析:要是函数y=有意义,需使 所以函数的定义域为{x|x≥1}=[1,+∞)
2、从某班的一次数学测试卷中任意抽出10份,其得分情况如下:81,98,43,75,60,55,78,84,90,70,则这次测验成绩的样本方差是()
答 案:252.84
解 析: =252.84
精彩评论