2023年成考高起点每日一练《数学(文史)》9月26日专为备考2023年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知向量i,j为互相垂直的单位向量,向量a=2i+mj,若|a|=2,则m=()
- A:-2
- B:-1
- C:0
- D:1
答 案:C
解 析:由题可知a=(2,m),因此,故m=0.
2、已知点M(-2,5),N(4,2),点P在上,且=1:2,则点P的坐标为()
- A:
- B:(0,4)
- C:(8,2)
- D:(2,1)
答 案:B
解 析:由题意得:
3、某学校为新生开设了4门选修课程,规定每位新生至少要选其中3门,则一位新生不同的选课方案共有 ( )
- A:7种
- B:4种
- C:5种
- D:6种
答 案:C
4、函数的图像与直线y=4的交点坐标为()
- A:(0,4)
- B:(4,64)
- C:(1,4)
- D:(4,16)
答 案:C
解 析:令y=4x=4,解得x=1,故所求交点为(1,4).
主观题
1、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.
答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积
2、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)
答 案:如图
3、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面积
答 案:
4、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
填空题
1、函数f(x)=在区间[-3,3]上的最大值为()
答 案:4
解 析:这题考的是高次函数的最值问题,可用导数来求函数在区间[-3,3]上的最值。 列出表格 由上表可知函数在[-3,3]上,在x=1点处有最大值为4.
2、已知向量a=(3,2),b=(-4,x),且a⊥b,则x=()
答 案:6
解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6.
精彩评论