2023年成考高起点每日一练《数学(理)》9月24日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、5名高中毕业生报考3所院校,每人只能报一所院校,则有()种不同的报名方法
- A:
- B:
- C:
- D:
答 案:C
解 析:将院校看成元素,高中生看成位置,由重复排列的元素、位置的条件口诀: “元素可挑剩,位置不可缺”,重复排列的种数共有种,即将元素的个数作为底数,位置的个数作为指数.即:元素(院校)的个数为 3,位置(高中生)的个数为5,共有种。
2、如果不共线的向量a和b有相等的长度,则(a+b)(a-b)=()
- A:0
- B:1
- C:-1
- D:2
答 案:A
解 析:(a+b)(a-b)=
3、展开式中,末3项的系数(a,x 均未知) 之和为()
- A:22
- B:12
- C:10
- D:-10
答 案:C
解 析:末三项数之和为
4、下列函数中,为减函数的是()
- A:
- B:
- C:
- D:
答 案:C
解 析:由对数函数的性质可知,当底数大于0小于1时,在定义域内,对数函数为减函数.
主观题
1、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得解得
2、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每的造价为15元,池底每的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域
答 案:
3、已知等差数列前n项和 (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和
答 案:
4、某工厂每月生产x台游戏机的收入为R(x)=+130x-206(百元),成本函数为C(x)=50x+100(百元),当每月生产多少台时,获利润最大?最大利润为多少?
答 案:利润 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函数当a<0时有最大值 是开口向下的抛物线,有最大值 法二:用导数来求解 因为x=90是函数在定义域内唯一驻点 所以x=90是函数的极大值点,也是函数的最大值点,其最大值为L(90)=3294
填空题
1、函数的图像与坐标轴的交点共有()
答 案:2
解 析:当x=0时,y=-2=-1,故函数与y轴交于(0,-1)点,令y=0,则有故函数与x轴交于(1,0) 点,因此函数 与坐标轴的交点共有 2个.
2、的展开式是()
答 案:
解 析:
精彩评论