124职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2023年09月21日成考高起点每日一练《数学(理)》

2023年09月21日成考高起点每日一练《数学(理)》

2023/09/21 作者:匿名 来源:本站整理

2023年成考高起点每日一练《数学(理)》9月21日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、设α是第三象限角,若,则sinα=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由于,而α为第三象限角,故

2、过点P(2,3)且在两轴上截距相等的直线方程为()  

  • A:
  • B:
  • C:x+y=5
  • D:

答 案:B

解 析:选项A中,在x、y 轴上截距为 5.但答案不完整 所以选项B中有两个方程,在x轴上横截距与y轴上的纵截距都为0,也是相等的 选项C,虽然过点(2,3),实质上与选项A相同.选项 D,转化为:答案不完整  

3、在△ABC中,已知2B= A+C,= ac,则B-A=()  

  • A:0
  • B:
  • C:
  • D:

答 案:A

解 析:在△ABC中,A+B+C=π,A+C=π-B,① 因为2B=A+C,② 由①②得2B=π-B, 由③④得a=c。所以A=C,又所以△ABC为等边三角形,则B-A=0  

4、参数方程为参数)表示的图形为()

  • A:直线
  • B:圆
  • C:椭圆
  • D:双曲线

答 案:B

解 析:即半径为1的圆,圆心在原点

主观题

1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

2、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

3、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每的造价为15元,池底每的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域  

答 案:

4、设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值

答 案:(Ⅰ)函数的定义域为 (Ⅱ)  

填空题

1、的展开式是()

答 案:

解 析:

2、函数的定义域是()

答 案:

解 析:所以函数的定义域是

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论