2023年成考高起点每日一练《数学(理)》9月20日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、下列函数中,为奇函数的是()
- A:
- B:
- C:
- D:
答 案:B
解 析:当f(-x)=-f(x),函数f(x)是奇函数,只有选项B符合.
2、已知向量a=(3,4),向量 b=(0,-2),则cos的值为()
- A:
- B:
- C:
- D:
答 案:B
解 析:求cos可直接用公式cos a·b=(3,4)·(0,-2)=3×0+4×(-2)=8,
3、设集合M={x||x-2|<1},N={x|x>2},则M∩N=()
- A:{x|1<x<3}
- B:{x|x>2}
- C:{x|2<x<3}
- D:{x|1<x<2}
答 案:C
解 析:M={x||x-2|<1}解得{x|-1<x-2<1}={x|1<x<3},故M∩N={x|2<x<3}
4、已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若,则m=()
- A:-2
- B:-1
- C:0
- D:1
答 案:C
解 析:由题可知向量a=(2,3,m),故,解得m=0.
主观题
1、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得当时,f'(x)
2、已知数列的前n项和 求证:是等差数列,并求公差和首项。
答 案:
3、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.
答 案:由△ABC的面积为得所以AB =4.因此所以
4、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量关于基底{a,b,c}的分解式 (Ⅱ)求证: (Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c两两垂直
填空题
1、不等式的解集为()
答 案:
解 析:
2、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()
答 案:
解 析:原直线方程可化为交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,
精彩评论