124职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2023年09月10日成考高起点每日一练《数学(理)》

2023年09月10日成考高起点每日一练《数学(理)》

2023/09/10 作者:匿名 来源:本站整理

2023年成考高起点每日一练《数学(理)》9月10日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、在△ABC中,若lgsinA-lgsinB-lgcos=lg2,则△ABC是()

  • A:以A为直角的三角形
  • B:b=c的等腰三角形
  • C:等边三角形
  • D:钝角三角形

答 案:B

解 析:判断三角形的形状,条件是用一个对数等式给出先将对数式利用对数的运算法则整理。 ∵lgsinA-lgsinB-lgcos=lg2,由对数运算法则可得,左 两个对数底数相等则真数相等:即2sinBcosC=sinA 在△ABC中,∵A+B+C=180°,∴A=180°-(B+C), 故为等腰三角形

2、下列函数中,为减函数的是()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由对数函数的性质可知,当底数大于0小于1时,在定义域内,对数函数为减函数.

3、已知直线l:3x-2y-5=0,圆C:,则C上到l的距离为1的点共有()

  • A:1个
  • B:2个
  • C:3个
  • D:4个

答 案:D

解 析:由题可知圆的圆心为(1,-1),半径为2 ,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.

4、已知偶函数y=f(x),在区间[a,b](0

  • A:增函数
  • B:减函数
  • C:不是单调函数
  • D:常数

答 案:B

解 析:由偶函数的性质:偶函数在[a,b]和[-b,-a]上有相反的单调性,可知,y=f(x)在区间[a,b](0f(-a),所以f(x)在[-b,-a]上是减函数。

主观题

1、已知等差数列前n项和 (Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和

答 案:  

2、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

3、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.

答 案:由△ABC的面积为所以AB =4.因此所以

4、已知数列的前n项和 求证:是等差数列,并求公差和首项。  

答 案:  

填空题

1、lg(tan43°tan45°tan47°)=()  

答 案:0

解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0

2、的展开式是()

答 案:

解 析:

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论