2023年成考高起点每日一练《数学(理)》9月8日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、在△ABC中,若lgsinA-lgsinB-lgcos=lg2,则△ABC是()
- A:以A为直角的三角形
- B:b=c的等腰三角形
- C:等边三角形
- D:钝角三角形
答 案:B
解 析:判断三角形的形状,条件是用一个对数等式给出先将对数式利用对数的运算法则整理。 ∵lgsinA-lgsinB-lgcos=lg2,由对数运算法则可得,左 两个对数底数相等则真数相等:即2sinBcosC=sinA 在△ABC中,∵A+B+C=180°,∴A=180°-(B+C), 故为等腰三角形
2、圆的圆心在()点上
- A:(1,-2)
- B:(0,5)
- C:(5,5)
- D:(0,0)
答 案:A
解 析:因为所以圆的圆心为O(1,-2)
3、已知集合M =(2,3,5,a),N =(1,3,4,b),若M∩N=(1,2,3),则a,b的值为
- A:a=2,b=1
- B:a=1,b=1
- C:a=1,b= 2
- D:a=1,b=5
答 案:C
解 析:M∩N={2,3,5,a} ∩{1,3,4,6} ={1,2,3} 又因为M中无“1”元素,而有“a”元素,只有a=1 而N中无“2”元素,而有“b元素”,只有b=2
4、设α是第三象限角,若,则sinα=()
- A:
- B:
- C:
- D:
答 案:D
解 析:由于,而α为第三象限角,故
主观题
1、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得当时,f'(x)
2、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)写出向量和关于基底{a,b,c}的分解式; (Ⅱ)求证: (Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
3、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.
答 案:由△ABC的面积为得所以AB =4.因此所以
4、已知数列的前n项和 求证:是等差数列,并求公差和首项。
答 案:
填空题
1、设离散型随机变量的分布列如下表,那么的期望等于()
答 案:5.48
解 析:=6×0.7+5.4×0.1+5×0.1+4×0.06+0×0.04=5.48
2、不等式的解集为()
答 案:
解 析:
精彩评论