124职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2023年09月02日成考高起点每日一练《数学(文史)》

2023年09月02日成考高起点每日一练《数学(文史)》

2023/09/02 作者:匿名 来源:本站整理

2023年成考高起点每日一练《数学(文史)》9月2日专为备考2023年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、点(2,4)关于直线y=x的对称点的坐标为()  

  • A:(4,2)
  • B:(-2,-4)
  • C:(-2,4)
  • D:(-4,-2)

答 案:A

解 析:点(2,4) 关于直线y=x对称的点为(4,2)

2、()  

  • A:8
  • B:14
  • C:12
  • D:10

答 案:B

解 析:

3、若函数f(x)=1+在(0,+∞)上是减函数,则()

  • A:a>1
  • B:a>2
  • C:1
  • D:0

答 案:D

解 析:由已知条件函数f(x)=1+在(0,+∞)上是减函数,及对数函数的性质可得底数0

4、已知向量i,j为互相垂直的单位向量,向量a=2i+mj,若|a|=2,则m=()

  • A:-2
  • B:-1
  • C:0
  • D:1

答 案:C

解 析:由题可知a=(2,m),因此,故m=0.

主观题

1、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

2、设椭圆的中心是坐标原点,长轴在x轴上,离心率已知点P到圆上的点的最远距离是求椭圆的方程  

答 案:由题意,设椭圆方程为 设P点到椭圆上任一点的距离为 d, 则在y=-b时,最大,即d也最大。  

3、设函数f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的单调区间

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 当x<-3时,f'(x)>0; 当-32时,f'(x)>0; 故f(x)的单调递减区间为(-3,2),f(x)的单调递增区间为(-∞,-3),(2,+∞)  

4、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)  

答 案:如图  

填空题

1、()

答 案:3

解 析:

2、任选一个不大于20的正整数,它恰好是3的整数倍的概率是()  

答 案:

解 析:设n为不大于20的正整数的个数,则n=20,m为在这20个数中3的倍数:3,6、9、12、15、18的个数。 ∴m=6,∴所求概率=  

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论