124职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2023年08月20日成考高起点每日一练《数学(理)》

2023年08月20日成考高起点每日一练《数学(理)》

2023/08/20 作者:匿名 来源:本站整理

2023年成考高起点每日一练《数学(理)》8月20日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、过点(-2,2)与直线x+3y-5=0平行的直线是()

  • A:x+3y-4=0
  • B:3x+y+4=0
  • C:x+3y+8=0
  • D:3x-y+8=0

答 案:A

解 析:所求直线与x+3y-5=0平行,可设所求直线为x+3y+c=0,将点(一2,2)带入直线方程,故-2+3×2+c=0,解得c=-4,因此所求直线为线为x+3y-4=0.

2、已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若,则m=()

  • A:-2
  • B:-1
  • C:0
  • D:1

答 案:C

解 析:由题可知向量a=(2,3,m),故,解得m=0.

3、展开式中,末3项的系数(a,x 均未知) 之和为()  

  • A:22
  • B:12
  • C:10
  • D:-10

答 案:C

解 析:末三项数之和为

4、从椭圆与x轴额右交点看短轴两端点的视角为60°的椭圆的离心率()  

  • A:
  • B:
  • C:1
  • D:

答 案:A

解 析:求椭圆的离心率,先求出a,c.(如图) ,由椭圆定义知

主观题

1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

2、已知数列的前n项和 求证:是等差数列,并求公差和首项。  

答 案:  

3、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.

答 案:由△ABC的面积为所以AB =4.因此所以

4、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每的造价为15元,池底每的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域  

答 案:

填空题

1、函数的定义域是()

答 案:

解 析:所以函数的定义域是

2、不等式的解集为()  

答 案:

解 析:

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论