2023年成考高起点每日一练《数学(理)》8月20日专为备考2023年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、过点(-2,2)与直线x+3y-5=0平行的直线是()
- A:x+3y-4=0
- B:3x+y+4=0
- C:x+3y+8=0
- D:3x-y+8=0
答 案:A
解 析:所求直线与x+3y-5=0平行,可设所求直线为x+3y+c=0,将点(一2,2)带入直线方程,故-2+3×2+c=0,解得c=-4,因此所求直线为线为x+3y-4=0.
2、已知空间向量i,j,k为两两垂直的单位向量,向量a=2i+3j+mk,若,则m=()
- A:-2
- B:-1
- C:0
- D:1
答 案:C
解 析:由题可知向量a=(2,3,m),故,解得m=0.
3、展开式中,末3项的系数(a,x 均未知) 之和为()
- A:22
- B:12
- C:10
- D:-10
答 案:C
解 析:末三项数之和为
4、从椭圆与x轴额右交点看短轴两端点的视角为60°的椭圆的离心率()
- A:
- B:
- C:1
- D:
答 案:A
解 析:求椭圆的离心率,先求出a,c.(如图) ,由椭圆定义知
主观题
1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此
2、已知数列的前n项和 求证:是等差数列,并求公差和首项。
答 案:
3、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.
答 案:由△ABC的面积为得所以AB =4.因此所以
4、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每的造价为15元,池底每的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域
答 案:
填空题
1、函数的定义域是()
答 案:
解 析:所以函数的定义域是
2、不等式的解集为()
答 案:
解 析:
精彩评论