2023年成考高起点每日一练《数学(文史)》3月27日专为备考2023年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、设集合M={x||x-2||<2},N={0,1,2,3,4},则M∩N=()
- A:{2}
- B:{0,1,2}
- C:{1,2,3}
- D:{0,1,2,3,4}
答 案:C
解 析:解得M={x||x-2||<2}={x|-2<x-2<2}={x|0<x<4},故M∩N={1,2,3}.
2、某学校为新生开设了4门选修课程,规定每位新生至少要选其中3门,则一位新生不同的选课方案共有 ( )
- A:7种
- B:4种
- C:5种
- D:6种
答 案:C
3、设α是三角形的一个内角,若,则sinα=()
- A:
- B:
- C:
- D:
答 案:D
解 析:由题知0<α<兀,而,故,因此.
4、已知直线l:3x一2y-5=0,圆C:,则C上到l的距离为1的点共有()
- A:1个
- B:2个
- C:3个
- D:4个
答 案:D
解 析:由题可知圆的圆心为(1.-1),半径为2,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.
主观题
1、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得解得
2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由得设A(x1,y1).B(x2,y2),则因此
3、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.
答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积
4、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
填空题
1、()
答 案:3
解 析:
2、点(4,5)关于直线y=x的对称点的坐标为()
答 案:(5,4)
解 析:点(4,5)关于直线y=x的对称点为(5,4).
精彩评论