2023年成考专升本每日一练《高等数学二》10月5日专为备考2023年高等数学二考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
判断题
1、若,则。()
答 案:错
解 析:所以
单选题
1、已知,则点x0是函数f(x)的().
- A:间断点
- B:连续点
- C:可导点
- D:连续性不确定的点
答 案:D
解 析:因为中的A不一定等于函数值f(x0),所以在x0处的连续性是不确定的.
2、设函数z=xey,则().
- A:ex
- B:ey
- C:xey
- D:yex
答 案:B
解 析:,.
主观题
1、在半径为R的半圆内作一内接矩形,其中的一边在直径上,另外两个顶点在圆周上(如图所示).当矩形的长和宽各为多少时矩形面积最大?最大值是多少?
答 案:解:如图所示,设x轴通过半圆的直径,y轴垂直且平分直径.设OA=x,则AB=,矩形面积.令s'=0,得(舍去负值).
由于只有唯一驻点,根据实际问题x=,必为所求,则AB=R.所以,当矩形的长为R、宽为R时,矩形面积最大,且最大值S=R2.
2、设,求dz(1,1).
答 案:解:
填空题
1、()
答 案:
解 析:
2、().
答 案:
解 析:.
简答题
1、从一批有10件正品及2件次品的产品中,不放回地一件一件地抽取产品,设每个产品被抽到的可能性相同,求直到取出正品为止所需抽取的次数X的概率分布。
答 案:由题意,X的所有可能的取值为1,2,3, X=1,即第一次就取到正品,P{X=1}= X=2,即第一次取到次品且第二次取到正品,P{X=2}= 同理,P{X=3}= 故X的概率分布如下
2、计算
答 案: 设则
精彩评论